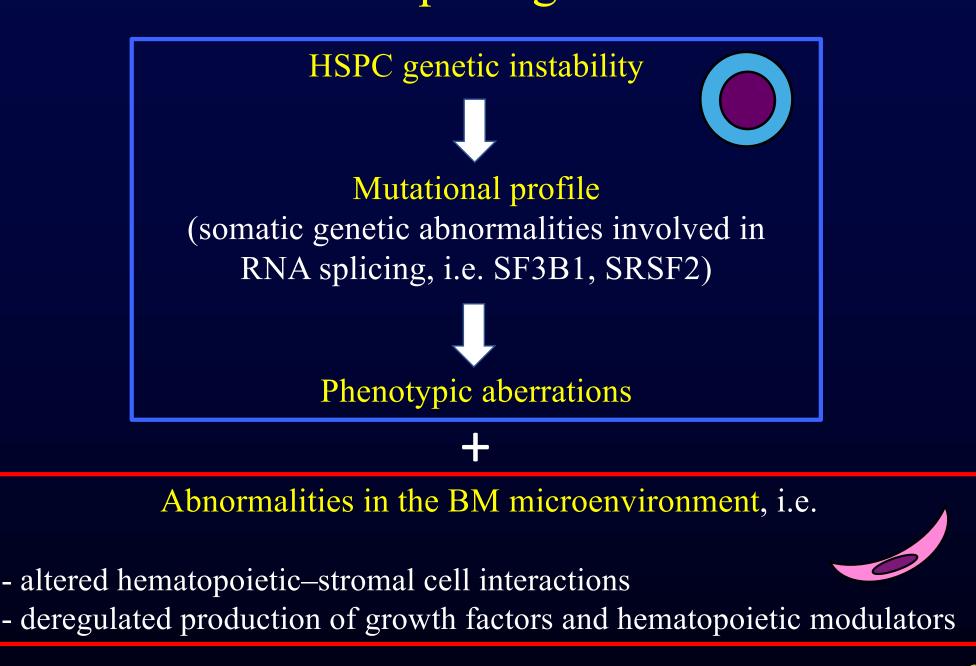
MYELODISPLASTIC SYNDROMES: CAOS AND ORDER

> October 26, 2018 IRST, Meldola

Hematopoietic stem cells and Mesenchymal stem cells in myelodysplasia

Mauro Krampera


Sezione di Ematologia - Laboratorio di Ricerca sulle Cellule Staminali Dipartimento di Medicina, Università degli Studi di Verona, Italia mauro.krampera@univr.it www.stemcellreslab-verona.it

DISCLOSURE

Mauro Krampera

MDS pathogenesis

OPEN

Leukemia (2015) 29, 259–268 © 2015 Macmillan Publishers Limited All rights reserved 0887-6924/15

www.nature.com/leu

REVIEW

Myelodysplasia is in the niche: novel concepts and emerging therapies

E Bulycheva¹, M Rauner², H Medyouf³, I Theurl⁴, M Bornhäuser^{1,5}, LC Hofbauer^{2,5} and U Platzbecker¹

• MDS is not only a disease of the HSCs, but of the entire BM microenvironment and bone metabolism

 Interactions between mesenchymal stem and progenitor cells (MSPC) and hematopoietic stem and progenitor cells (HSPC) contribute to the pathogenesis of MDS and associated disorders

npg

Bone marrow hematopoietic stem cell niche

Bone matrix -

(osteopontin limits HSC number Ca²⁺-R participates in

localization)

cKit/cKit-L

CXCL12/CXCR4

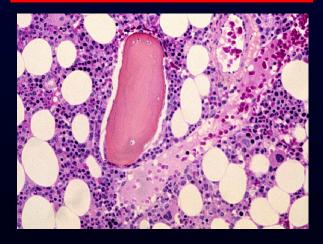
VCAM/ α 4 β 1

 $TGF\beta 1/TGF\beta - R$

Ang1/Tie2

BMP-4/BMP-R

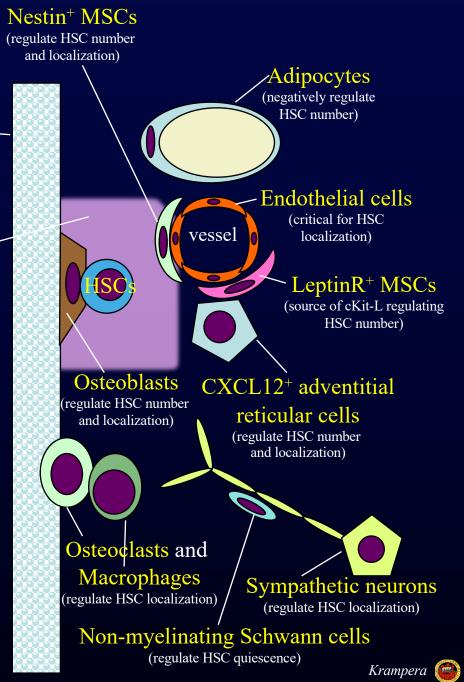
Notch1/Jagged1 (+ PTH)

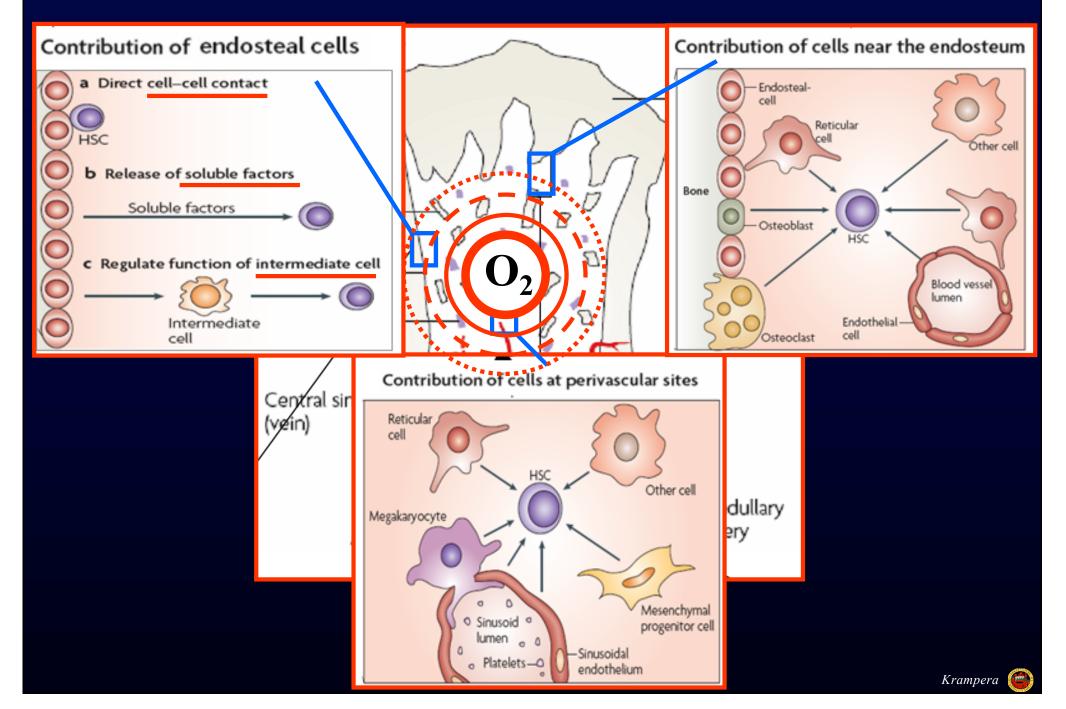

Wnt/LRP-Frz

N-Cadherin

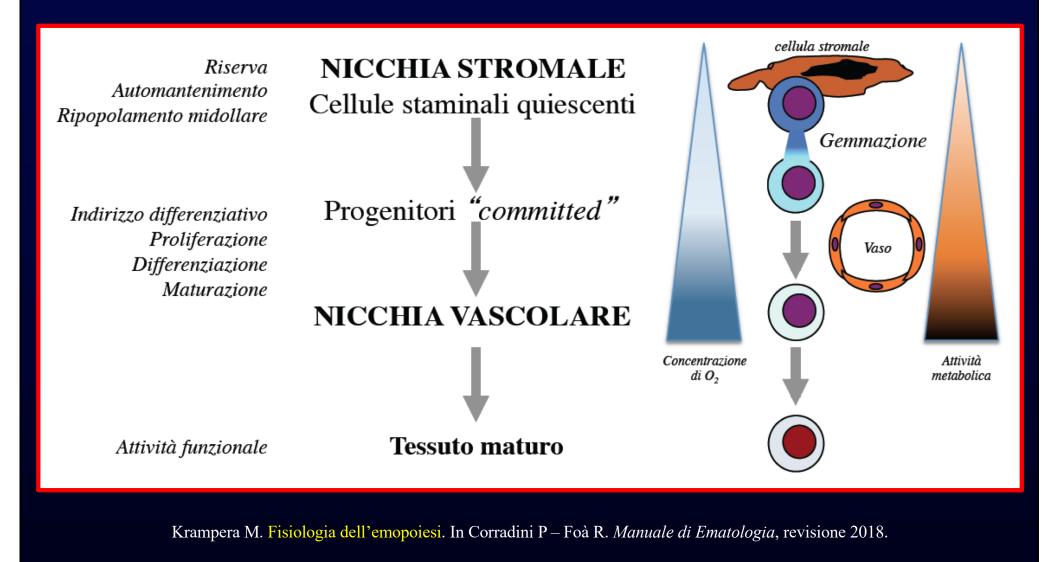
Discrete and specialized micronvironmental space where interactions occur, through direct contact and soluble factors, amongst:

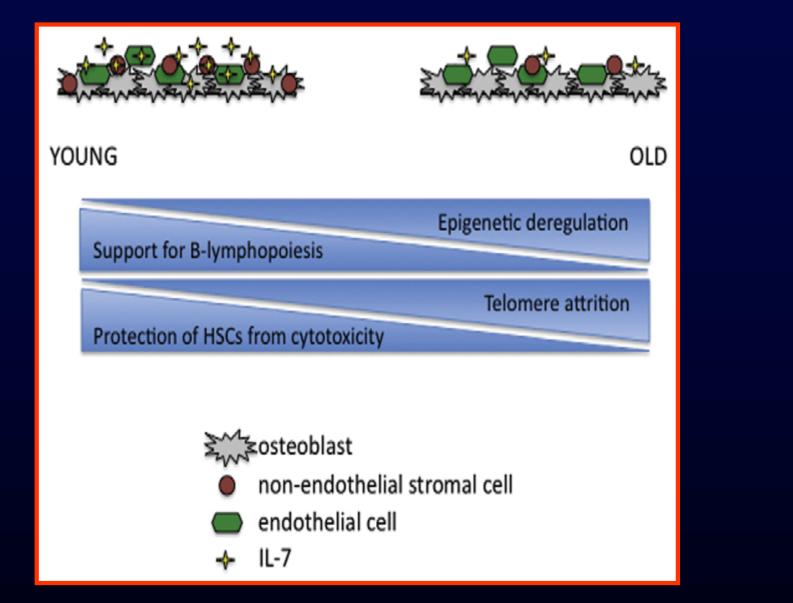
HSCs "Stromal cells" Extracellular bone matrix (ialuronic acid, glycosaminoglycans, osteopontin, etc.)


leading to a finely tuned regulation of HSC functional properties

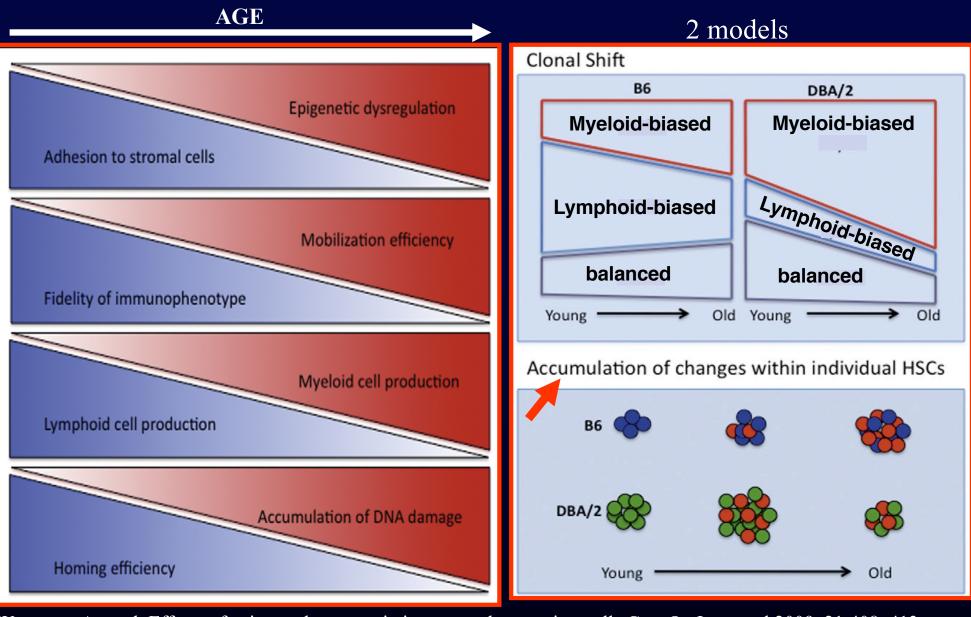

D. T. Scadden, ASH 2012, modified (data by Li, Frenette, Suda, Morrison, Nilsson, Nakauachi, Nagasawa, Lavesque, Daley, Rafii, Calvi, Adams)

Méndez-Ferrer et al. Nature (2010)


Carlos López-Larrea et al. Stem Cell Transpl (2012)

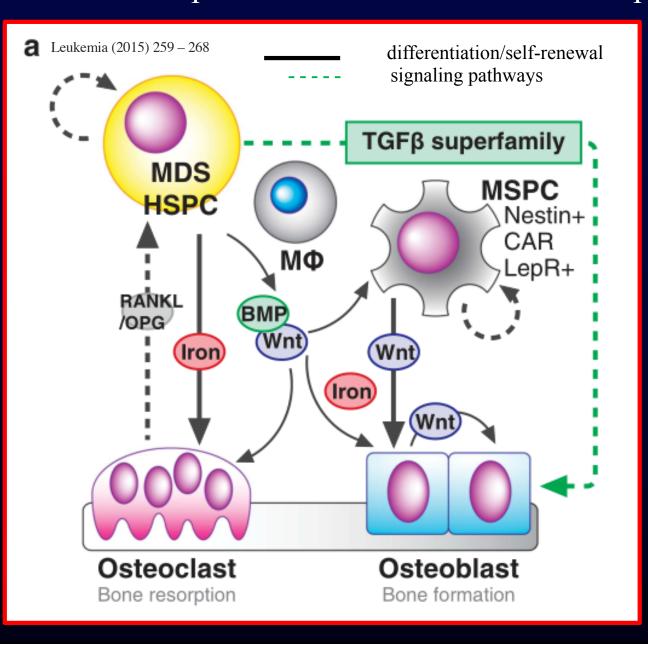

HSC niche

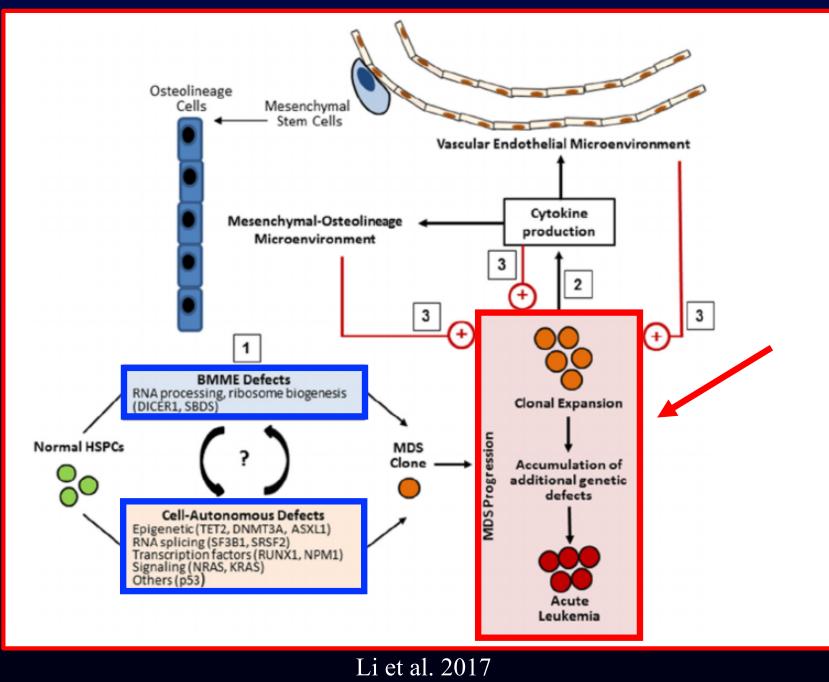
Bone marrow hematopoietic stem cell niche


HSC stromal niche ageing

Waterstrat A, et al. Effects of aging on hematopoietic stem and progenitor cells Curr Op Immunol 2009, 21:408-413

Krampera 🧯


HSC ageing



Waterstrat A, et al. Effects of aging on hematopoietic stem and progenitor cells Curr Op Immunol 2009, 21:408–413

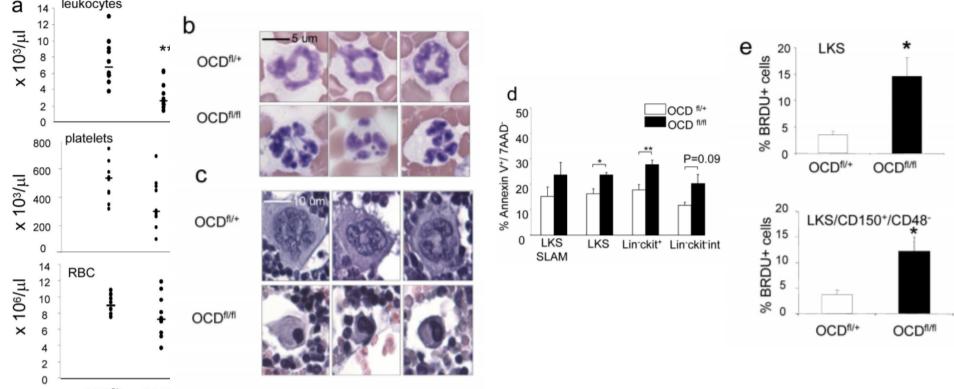
Krampera 🧯

Role of the BM microenvironment in MDS pathogenesis Cellular and humoral components within the osteo-hematopoietic niche

- 1- Animal models revealing BM microenvironment-induced MDS
- 2-Alterations of the cellular components of the niche in MDS patients
- 3- Signalling defects within the osteo-hematopoietic niche
- 4- Iron overload and dysregulation of iron homeostasis

1- Animal models revealing BM microenvironment-induced MDS

Published in final edited form as: *Nature*. 2010 April 8; 464(7290): 852–857. doi:10.1038/nature08851.

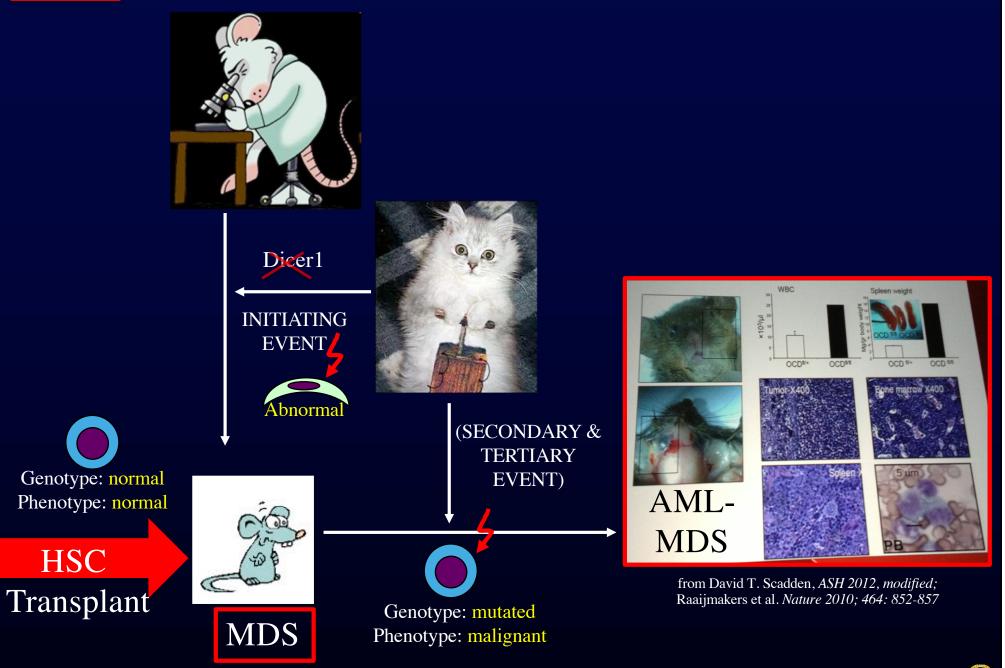

Bone progenitor dysfunction induces myelodysplasia and secondary leukemia

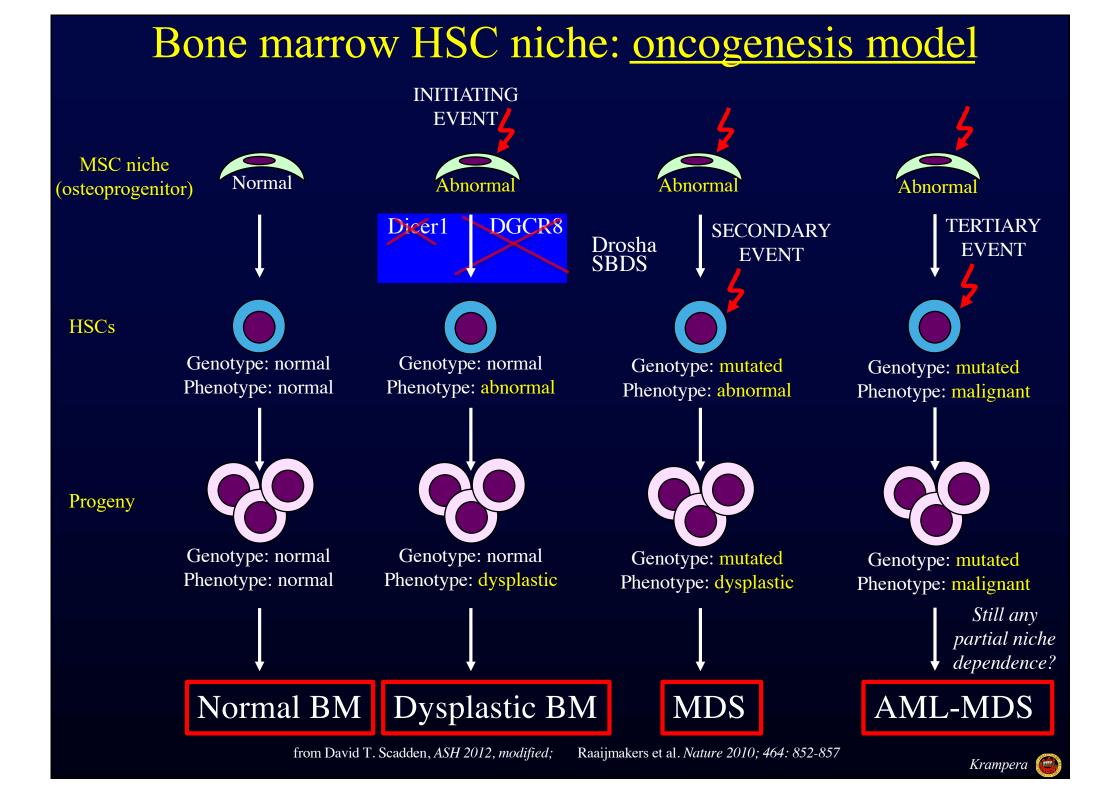
Marc H.G.P. Raaijmakers^{1,2,3,*}, Siddhartha Mukherjee^{1,2,3,4,*,#}, Shangqin Guo^{1,2,3}, Siyi Zhang^{1,2,3}, Tatsuya Kobayashi⁵, Jesse A. Schoonmaker^{1,2,3}, Benjamin L. Ebert⁶, Fatima Al-Shahrour⁶, Robert P. Hasserjian⁷, Edward O. Scadden^{1,2,3}, Zinmar Aung^{1,2,3}, Marc Matza^{1,2,3}, Matthias Merkenschlager⁸, Charles Lin⁹, Johanna M. Rommens¹⁰, and David. T. Scadden^{1,2,3,4}

- Selective *Dicer1* deletion (miRNA processing endonuclease) in MSC osteoprogenitors induces markedly abnormal hematopoiesis and eventually AML
- Dicer1-/- osteoprogenitors display reduced levels of Sbds, the gene mutated in Shwachman-Bodian-Diamond Syndrome (BM failure and AML predisposition)
- Deletion of Sbds in osteoprogenitors largely mimics Dicer1 deletion
- (MSPCs from MDS patients exhibit a low expression of Dicer1 and DROSHA)

Role of the BM microenvironment in MDS pathogenesis 1-Animal models revealing BM microenvironment-induced MDS

Myelodysplasia in *Dicer*^{-/-} mice (Raaijmakers et al. Nature 2010)




OCD^{fl/+} OCD

leukocytes

Figure 2. Myelodysplasia in OCD fl/fl mice a, Leukopenia with variable anemia (p=0.16) and thrombocytopenia (p=0.08) in OCD fl/fl mice (n=10). b, blood smears showing dysplastic hyperlobulated nuclei in granulocytes c, bone marrow sections showing micro-megakaryocytes with hyperchromatic nuclei d, increased apoptosis of hematopoietic progenitor cells in OCD fl/fl mice. (n=4) e, increased proliferation of hematopoietic progenitor cells as shown by in vivo BRDU labeling (n=4). Data are mean \pm s.e.m. * p ≤ 0.05 , **p ≤ 0.01 . RBC=red blood cells, LKS= lineage -C-kit+ Sca1+ cells LKS-SLAM= lineage -C-kit+ Sca1+ CD150+ CD48- cells L-K+= lineage-c-kit+ cells L-K-int=lineage-Ckit intermediate, BRDU= bromodeoxyuridine.

AML with soft tissue infiltration in <u>Dicer1-deleted mice</u>

Role of the BM microenvironment in MDS pathogenesis 1- Animal models revealing BM microenvironment-induced MDS

Table 1. Murine models of MDS exhibiting bone marrow microenvironment involvement					
	Genetic alteration		Model features		
Model	Gene	Location	MDS	Microenvironment	References
Osx-GFP-Cre ⁺ Dicer ^{fl/fl} mice	Dicer1 deletion	Microenvironment (osteoprogenitors targeted by Osterix)	 Cytopenias Dysplasia Progression to acute leukemia Hypercellular marrow Increased apoptosis 	 Osteoblastic dysfunction (impaired osteoblastic differentiation) with downregulation of the <i>Sbds</i> gene Increased vascularity 	[55]
Osx-GFP-Cre ⁺ Sbds ^{fl/fl} mice	Sbds deletion	Microenvironment (osteoprogenitors targeted by Osterix)	 Cytopenias Dysplasia Increased apoptosis Genotoxic stress 	 Growth retardation with skeletal defects due to impaired osteoblastic differentiation S100A8 and S100A9 overexpression by <i>Sbds</i>-deficient osteoprogenitor cells drive HSPC genotoxic stress Increased vascularity 	[55,87]
NUP98-HOXD13 (NHD13)- transgenic mice	NUP98-HOXD13 fusion transgene expression	Hematopoietic cells (targeted by Vav regulatory elements)	 Cytopenias Dysplasia Progression to acute leukemia Hypercellular marrow Impaired differentiation 	 Age-dependent alterations of mesenchymal osteolineage cells and skeletal phenotype Increased vascularity 	[88–90]
S100A9- transgenic mice	S100A9 overexpression	Hematopoietic cells (targeted by H2K promoter)	 Increased apoptosis Cytopenias Dysplasia Increased pyroptosis 	 Expansion of CD33⁺ myeloid-derived suppressor cells leading to production of hematopoiesis-suppressive cytokines (IL-10 and TGF-β) Caspase-1 activation, NLRP3 inflammasome complex formation, and pyroptosis induction in BM cells 	[91,99]

Role of the BM microenvironment in MDS pathogenesis 1- Animal models revealing BM microenvironment-induced MDS

Cell Stem Cell 2014;14(6):824-37

Myelodysplastic Cells in Patients Reprogram Mesenchymal Stromal Cells to Establish a Transplantable Stem Cell Niche Disease Unit

Hind Medyouf,^{1,11,13,*} Maximilian Mossner,² Johann-Christoph Jann,² Florian Nolte,² Simon Raffel,³ Carl Herrmann,^{4,5} Amelie Lier,³ Christian Eisen,³ Verena Nowak,² Bettina Zens,^{1,3} Katja Müdder,^{1,3} Corinna Klein,^{1,3} Julia Obländer,² Stephanie Fey,² Jovita Vogler,² Alice Fabarius,² Eva Riedl,⁶ Henning Roehl,⁷ Alexander Kohlmann,⁸ Marita Staller,⁸ Claudia Haferlach,⁸ Nadine Müller,² Thilo John,⁹ Uwe Platzbecker,¹⁰ Georgia Metzgeroth,² Wolf-Karsten Hofmann,² Andreas Trumpp,^{1,3,11,12,*} and Daniel Nowak^{2,12}

- Xenograft model of low-risk MDS: the first proof of concept that patient-derived stromal cells drive propagation of human MDS stem cells *in vivo*
- Intrabone co-injection of low-risk MDS patient-derived CD34+ cells + MSPCs into immunocompromised mice leads to long-term engraftment of *bone fide* MDS cells (strong myeloid bias and clonality tracking). CD34+ cells-only injection is highly ineffective
- Patient-derived MSPCs are more efficient than healthy age-matched MSPCs in supporting MDS stem cells
- a number of processes involved in cellular cross-talk are deregulated in MDS-MSPCs

2- Alterations of the cellular components of the niche in MDS patients

PROs	CONs
 Cytogenetic aberrations in MDS-MSPCs^{62,63,74} Lower expression of <i>Dicer1</i>, <i>DROSHA</i>,^{56,57} <i>AURKA</i>, <i>AURKB</i>⁷⁵ genes in MDS-MSPCs 	 Normal cytogenetics in MDS-MSPCs^{64,66} Normal structure, proliferation and differentiation potential of MDS-MSPCs^{62,63,64,66}
 Altered immunophenotype in MDS-MSPCs: decreased CD44 and CD49e,⁷⁰ CD90, CD104 and CD105⁶⁸ expression, increased CXCL12 expression⁷¹ Impaired proliferation and differentiation capacity of MDS-MSPCs^{58,65,70} Impaired cytokine production, including IL-32, by MDS-MSPCs⁵⁸ 	 Normal HSC support by MDS-MSPCs^{62,63,64}
 Deregulation of Wnt signaling pathway in MDS-MSPCs^{82,89} Impaired HSPC support by MDS-MSPCs^{65,66} 	Bulycheva et al. 2015

- Stromal cells fail to support HSC trafficking into the microenvironmental niche
- Cytogenetic abnormalities in MSPCs (mostly in Chr 1 and 7, different from those detectable in HSPCs) in up to 50% of MDS patients
- Monocytes from MDS patients fail to upregulate matrix MMP-9 gene expression in response to stromal signals. MMP-9 promote the egress of cells from the BM: nonresponsive monocytes accumulate over time, whereas inducible levels of MMP-9 decline, thus resulting in hypercellularity in the BM of patients with MDS
- Macrophages interfere with interactions between MSPCs and HSPCs in MDS through increased synthesis of $TNF-\alpha$

3- Signalling defects within the osteo-hematopoietic niche

• Controvertial role of secreted cytokines and adhesion molecules in MDS

Leukemia (2010) 24, 748–755 © 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 \$32.00

www.nature.com/leu

ORIGINAL ARTICLE

Lenalidomide induces cell death in an MDS-derived cell line with deletion of chromosome 5q by inhibition of cytokinesis

A Matsuoka¹, A Tochigi¹, M Kishimoto¹, T Nakahara¹, T Kondo¹, T Tsujioka¹, T Tasaka¹, Y Tohyama² and K Tohyama¹

Available online at www.sciencedirect.com

Leukemia Research

Leukemia Research 32 (2008) 1407-1416

www.elsevier.com/locate/leukre

Functional analysis of myelodysplastic syndromes-derived mesenchymal stem cells

Eugenia Flores-Figueroa^{a,*}, Juan José Montesinos^a, Patricia Flores-Guzmán^a, Guillermo Gutiérrez-Espíndola^b, Rosa María Arana-Trejo^c, Sebastián Castillo-Medina^a, Adrián Pérez-Cabrera^c, Erika Hernández-Estévez^a, Lourdes Arriaga^d, Hector Mayani^a

Contents lists available at ScienceDirect

Leukemia Research

journal homepage: www.elsevier.com/locate/leukres

Disease progression mechanism in myelodysplastic syndromes: Insight into the role of the microenvironment

Mariko Ishibashi, Hideto Tamura, Kiyoyuki Ogata*

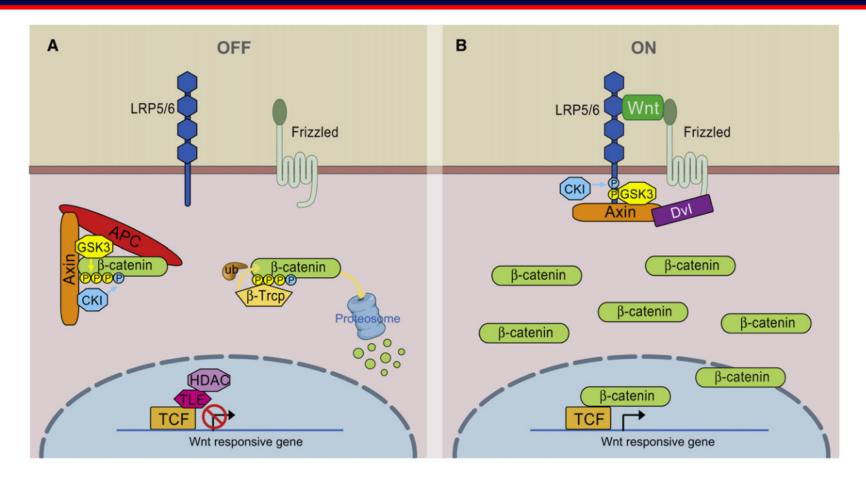
Canonical Wnt signaling deregulation in MDS-MSPCs

Impaired Wnt-Pathway Signalling and Reduced Expression of Senescence-Associated Markers in Bone Marrow Mesenchymal Stem Cells of Patients with Myelodysplastic Syndromes

Konstantia I. Pavlaki, Maria-Christina Kastrinaki, Aristea Batsali, Anthi Demetriadou, Maria Velegraki, Irene Mavroudi, Michael Klontzas, Anna Psaraki, Maria Psyllaki, Charalampos Pontikoglou, and Helen A. Papadaki

Erythropoietin inhibits osteoblast function in myelodysplastic syndromes via the canonical Wnt pathway

Ekaterina Balaian,¹* Manja Wobus,¹* Heike Weidner,¹ Ulrike Baschant,^{2,3} Maik Stiehler,⁴ Gerhard Ehninger,¹ Martin Bornhäuser,^{1,5} Lorenz C Hofbauer,^{2,3,5} Martina Rauner^{2,3}** and Uwe Platzbecker^{1,3,5}**


Haematologica 2018 Volume 103(1):61-68

Blood 2011 118:272;

Wnt / β-Catenin signaling pathway

Canonical Wnt pathway

Figure 1. Overview of Wnt/β-Catenin Signaling

(A) In the absence of Wnt, cytoplasmic β -catenin forms a complex with Axin, APC, GSK3, and CK1, and is phosphorylated by CK1 (blue) and subsequently by GSK3 (yellow). Phosphorylated β -catenin is recognized by the E3 ubiquitin ligase β -Trcp, which targets β -catenin for proteosomal degradation. Wnt target genes are repressed by TCF-TLE/Groucho and histone deacetylases (HDAC).

(B) In the presence of Wnt ligand, a receptor complex forms between Fz and LRP5/6. Dvl recruitment by Fz leads to LRP5/6 phosphorylation and Axin recruitment. This disrupts Axin-mediated phosphorylation/degradation of β -catenin, allowing β -catenin to accumulate in the nucleus where it serves as a coactivator for TCF to activate Wnt-responsive genes.

MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009 Jul;17(1):9-26

Krampera 🧯

Wnt / β-catenin signaling pathway

Canonical Wnt pathway

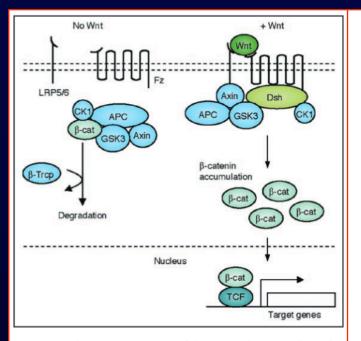


Figure 1. A schematic representation of the canonical Wnt signal transduction cascade. Left, in the absence of Wnt ligand, a complex of Axin, APC, GSK3- β , CK1 and β -catenin is located in the cytosol. β -catenin is dually phosphorylated by CK1 and GSK3- β and targeted degraded by the proteosomal machinery mediated by β -TrCP. Right, with Wnt stimulation, signaling through the Fz receptor and LRP5/6 co-receptor complex induces the dual phosphorylation of LRP6 by CK1 and GSK3- β and this allows for the translocation of a protein complex containing Axin from the cytosol to the plasma membrane. Dsh is also recruited to the membrane and binds to Fz and Axin binds to phosphorylated LRP5/6. This complex formed at the membrane and *z*/LRP5/6 induces the stabilization of β -cat via either sequestration and/ or degradation of Axin. β -catenin translocates into the nucleus where it complexes with Lef/Tcf family members to mediate transcriptional induction of target genes.

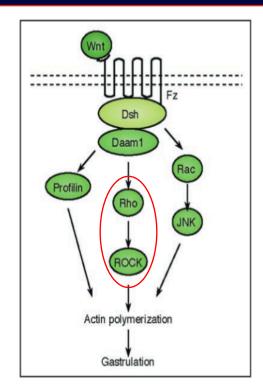


Figure 2. A schematic representation of the Planar Cell Polarity transduction cascade. Wnt signaling is transduced through Fz independent of LRP5/6 leading to the activation of Dsh. Dsh through Daam1 mediates activation of Rho which in turn activates Rho kinase (ROCK). Daam1 also mediates actin polymerization through the actin binding protein Profilin. Dsh also mediates activation of Rac, which in turn activates JNK. The signaling from Rock, JNK and Profilin are integrated for cytoskeletal changes for cell polarization and motility during gastrulation.

Non-canonical Wnt pathways

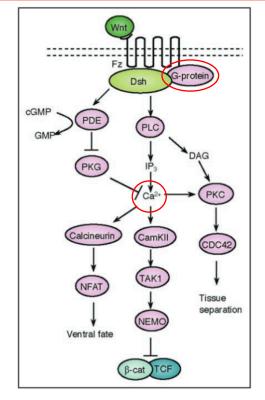
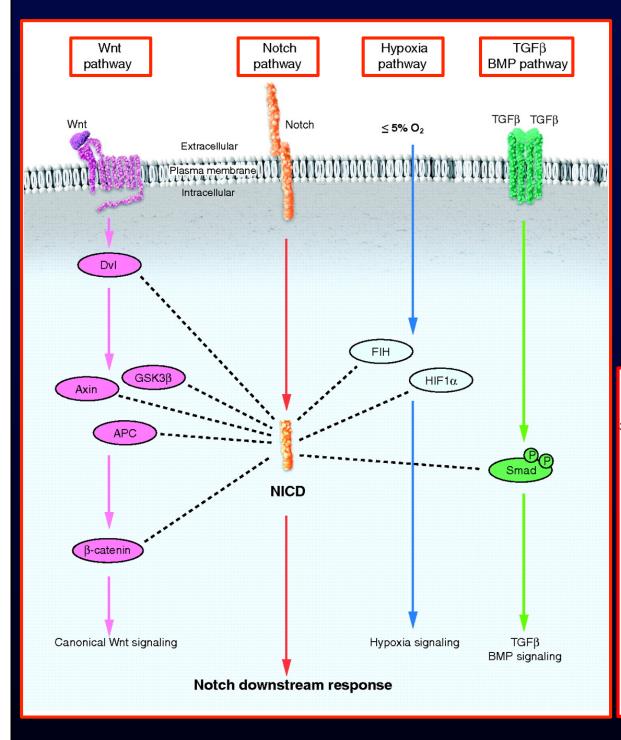
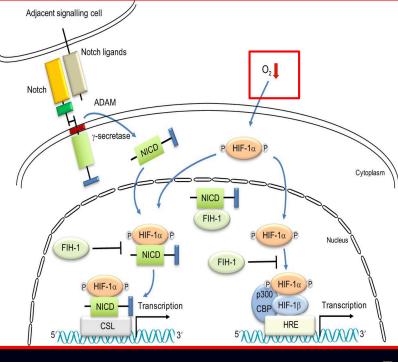
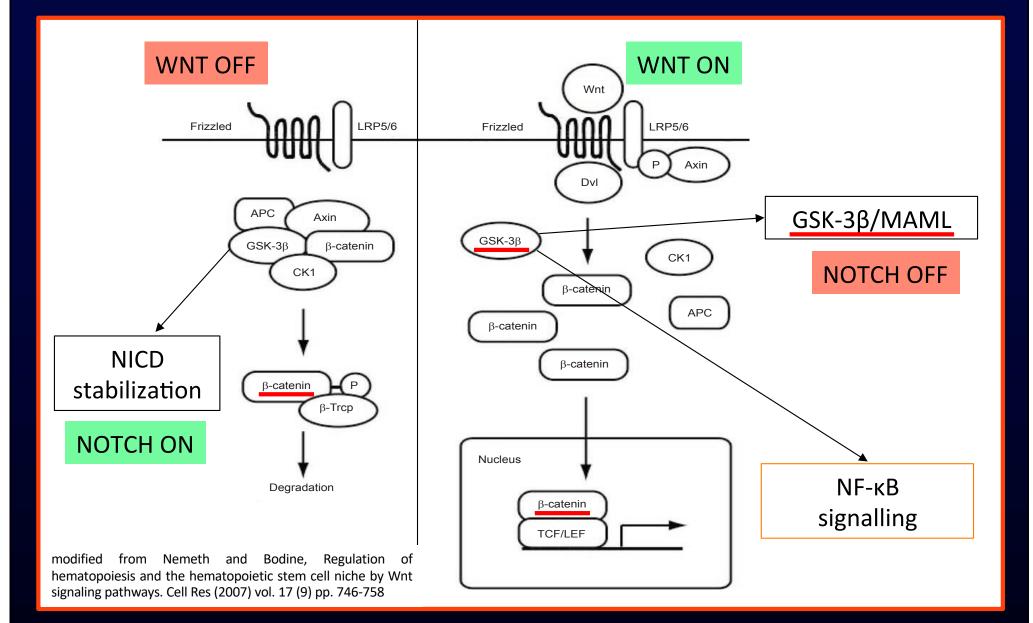
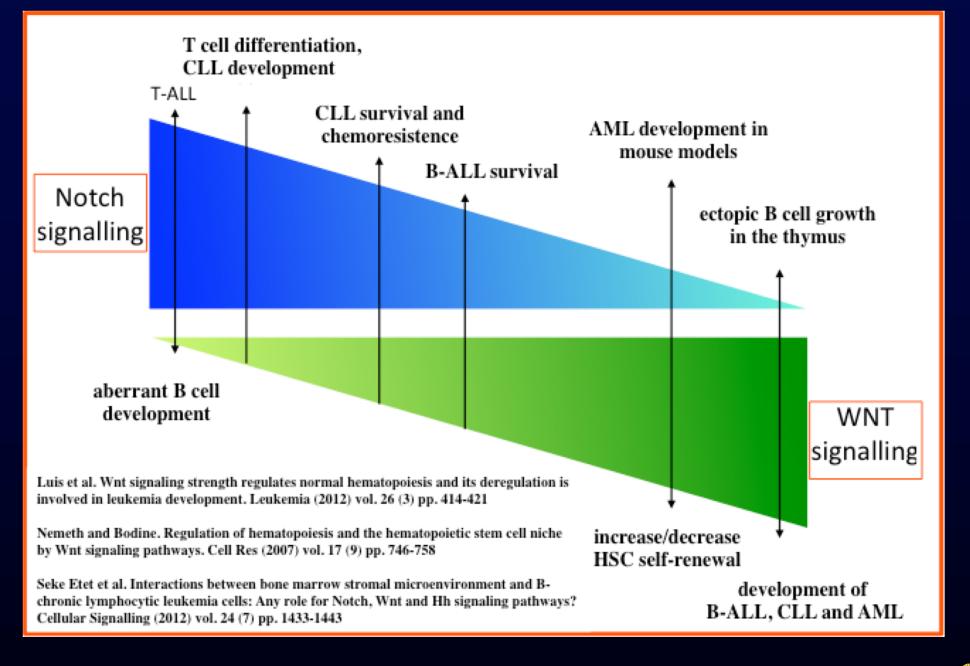




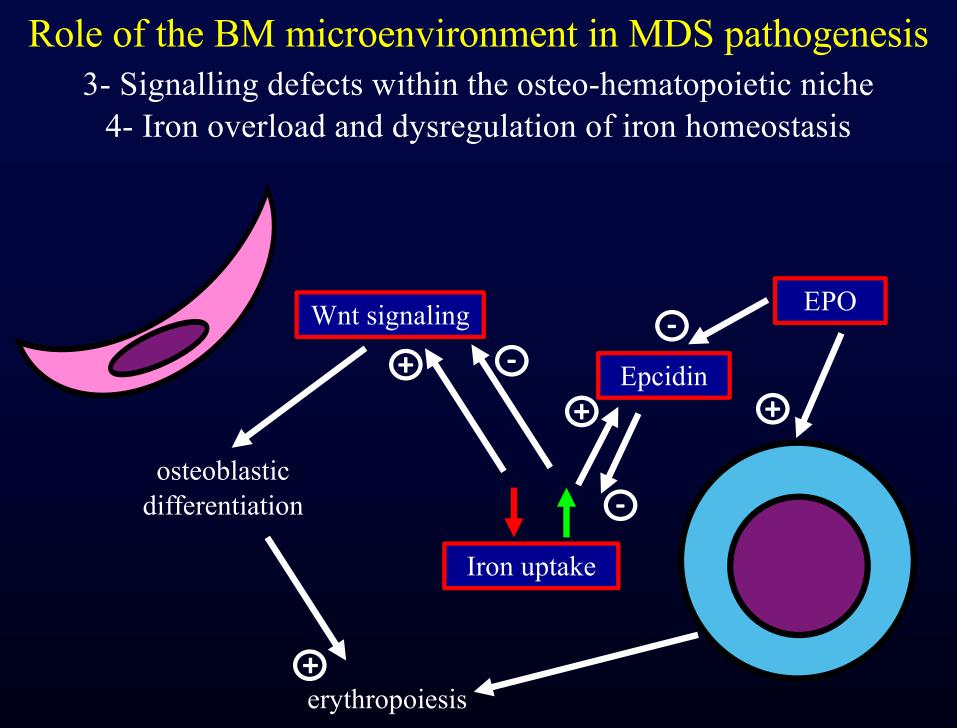
Figure 3. A schematic representation of the Wnt/Ca²⁺ signal transduction cascade. Wnt signaling via Fz mediates activation of Dsh via activation of G-proteins. Dishevelled activates the phosphodiesterase PDE which inhibits PKG and in turn inhibits Ca²⁺ release. Dsh through PLC activates IP3, which leads to release of intracellular Ca²⁺, which in turn activates CamK11 and calcineurin. Calcineurin activate NF-AT to regulate ventral cell fates. CamK11 activates TAK and NLK, which inhibit β-catenin/TCF function to negatively regulate dorsal axis formation. DAG through PKC activates CDC42 to mediate tissue separation and cell movements during gastrulation.

Komiya Y1, Habas R. Wnt signal transduction pathways. Organogenesis. 2008 Apr;4(2):68-75



Cross-interactions of different signalling pathways in normal hematopoiesis




Krampera (

Notch / Wnt balance in normal hematopoiesis

Notch / Wnt balance in neoplastic hematopoiesis

- 3- Signalling defects within the osteo-hematopoietic niche4- Iron overload and dysregulation of iron homeostasis
- Iron depletion can activate Wnt/β-catenin and induce osteoblastic differentiation of MSPCs
- Deregulated Wnt signaling in MDS MSPCs disrupts iron regulation (→ accumulation) and is an important factor in MDS pathogenesis

Impaired Wnt-Pathway Signalling and Reduced Expression of Senescence-Associated Markers in Bone Marrow Mesenchymal Stem Cells of Patients with Myelodysplastic Syndromes

Konstantia I. Pavlaki, Maria-Christina Kastrinaki, Aristea Batsali, Anthi Demetriadou, Maria Velegraki, Irene Mavroudi, Michael Klontzas, Anna Psaraki, Maria Psyllaki, Charalampos Pontikoglou, and Helen A. Papadaki

Blood 2011 118:272;

Published in final edited form as: Leukemia. 2012 March ; 26(3): 414–421. doi:10.1038/leu.2011.387.

Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development

Tiago C. Luis^{1,2}, Michiko Ichii³, Martijn H. Brugman², Paul Kincade³, and Frank J.T. Staal^{1,2}

- 3- Signalling defects within the osteo-hematopoietic niche4- Iron overload and dysregulation of iron homeostasis
- MDS-MSPCs exhibit a lower mineralization in response to Epo due to Wnt dysregulation
- Decrease of sensitivity of erythroid progenitors to Epo in TfR2-/- mouse model (TfR2 is a component of the Epo-R complex) → Epo increase → iron overload

Erythropoietin inhibits osteoblast function in myelodysplastic syndromes via the canonical Wnt pathway

Ekaterina Balaian,¹* Manja Wobus,¹* Heike Weidner,¹ Ulrike Baschant,^{2,3} Maik Stiehler,⁴ Gerhard Ehninger,¹ Martin Bornhäuser,^{1,5} Lorenz C Hofbauer,^{2,3,5} Martina Rauner^{2,3}** and Uwe Platzbecker^{1,3,5}** Haematologica 2018

Volume 103(1):61-68

CLINICAL TRIALS AND OBSERVATIONS

Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF: the GFM experience

Sophie Park,¹ Sophie Grabar,² Charikleia Kelaidi,³ Odile Beyne-Rauzy,⁴ Françoise Picard,⁵ Valérie Bardet,⁵ Valérie Coiteux,⁶ Geneviève Leroux,⁷ Pascale Lepelley,⁸ Marie-Thérèse Daniel,⁹ Stéphane Cheze,¹⁰ Béatrice Mahé,¹¹ Augustin Ferrant,¹² Christophe Ravoet,¹³ Martine Escoffre-Barbe,¹⁴ Lionel Adès,³ Norbert Vey,¹⁵ Lina Aljassem,¹⁶ Aspasia Stamatoullas,¹⁷ Lionel Mannone,¹⁸ Hervé Dombret,¹⁹ Keith Bourgeois,²⁰ Peter Greenberg,²¹ Pierre Fenaux,³ and François Dreyfus,¹ for the GFM group (Groupe Francophone des Myélodysplasies)

$p\mbox{-}ERK1/2$ is a predictive factor of response to erythropoiesis-stimulating agents in low/int-1 myelodysplastic syndromes

Emilie Frisan,^{12,3,5} Patrycja Pawlikowska,^{12,3} Cecile Pierre-Eugène,^{12,3,4} Vivian Viallon,^{5,6} Laure Gibault,^{5,7} Sophie Park,^{12,3,5,8} Patrick Mayeux,^{12,3} François Dreyfus,^{12,3,5,8} Françoise Porteu,^{12,3} Michaëla Fontenay^{12,3,4,5}

RED CELLS, IRON, AND ERYTHROPOIESIS

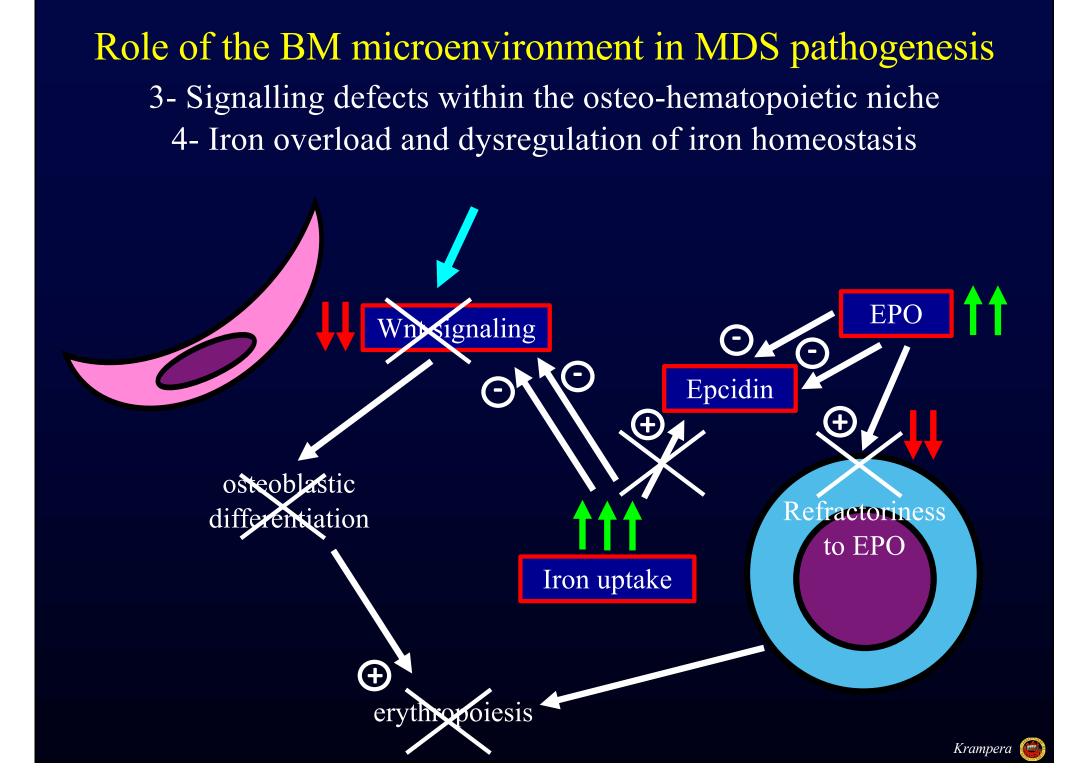
Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis

Hana Forejtnikovà,^{1,2} *Maud Vieillevoye,^{1,2} *Yael Zermati,^{1,2} Mireille Lambert,^{1,2} Rosa Maria Pellegrino,³ Soizic Guihard,^{1,2} Muriel Gaudry,^{1,2} Clara Camaschella,⁴ Catherine Lacombe,^{1,2,5} Antonella Roetto,⁴ †Patrick Mayeux,^{1,2} and †Frédérique Verdier^{1,2}

- 3- Signalling defects within the osteo-hematopoietic niche4- Iron overload and dysregulation of iron homeostasis
- Iron overload is very common in MDS (blood transfusions and inefficient erythropoiesis
- Iron overload has adverse effects on bone homeostasis (inhibition of Wnt signalling)
- In the process of iron overload, hyper-production of hepcidin occurs
- In MDS hepcidin levels are very heterogenous depending on the subtype, with the lowest level in RARS and the highest in RAEB and CMML, and EPO levels

Expression of Genes Regulating Iron Metabolism in Hepatocyte Cell-Line HepG2 Induced by Sera from MDS Patients.

Laura Breda, Hussam Ghoti, Stefano Rivella, Gideon Rechavi, Ioav Cabantchik, and Eliezer A. Rachmilewitz


Blood 2007 110:4612;

Articles

Myelodysplastic Syndromes

Inappropriately low hepcidin levels in patients with myelodysplastic syndrome carrying a somatic mutation of SF3B1

Ilaria Ambaglio,¹ Luca Malcovati,^{1,2} Elli Papaemmanuil,³ Coby M. Laarakkers,^{4,5} Matteo G. Della Porta,¹ Anna Gallì,^{1,2} Matteo C. Da Vià,^{1,2} Elisa Bono,^{1,2} Marta Ubezio,^{1,2} Erica Travaglino,¹ Riccardo Albertini,⁶ Peter J. Campbell,³ Dorine W. Swinkels,^{4,5} and Mario Cazzola^{1,2}

Role of the BM microenvironment in MDS pathogenesis 3- Signalling defects within the osteo-hematopoietic niche

Table 2. Aberrant signaling molecules in the MDS microenvironment

Signaling molecule	Involvement in MDS			
CCL3	Mesenchymal osteolineage dysfunction [85,89,101–103]			
TGF-β	Hematopoietic suppression [146]			
	Secreted by myeloid cells downstream of S100A9-CD33 signaling [99]			
S100A9 and S100A8	Production by mesenchymal stromal cells in human MDS correlates with leukemic progression [87]			
	Induces expansion of CD33+ myeloid-derived suppressor cells and induces secretion of suppressive cytokines TGF-B and IL-10 [99]			
	Induces caspase-1-mediated pyroptotic cell death and IL-1ß production [91]			
	Induces HSPC genotoxic stress [87]			
IL-1β	Increased cell death in MDS marrow [144]			
	Increased production downstream of S100A9-mediated caspase-1 activation [91]			
VEGF	Increases marrow vascularity [112-116] to potentially increase O2 and nutrient delivery to malignant cells			
	Direct stimulation of malignant cell proliferation [129]			
	Overexpressed by myeloid precursors in MDS [129], megakaryocytes [113], and mesenchymal stromal cells [76,83]			

Li et al. 2017

Hypoxia and MDS

- Hypoxia / low oxygen availability contributes to both normal and malignant hematopoiesis
- HIF-1 and HIF-2 (hypoxia inducible transcription factors) are the key mediators of the cellular response to hypoxia
- In MDS patients, HIF-1 expression correlates with poor patient survival and disease progression
- The strong hypoxic gene expression profile of supportive MDS-MSCs, in comparison to healthy MSCs, suggests that hypoxia and HIF-1 signaling may influence the malignant behavior of MDS-MSCs

Hypoxia-inducible factor-1 α expression indicates poor prognosis in myelodysplastic syndromes

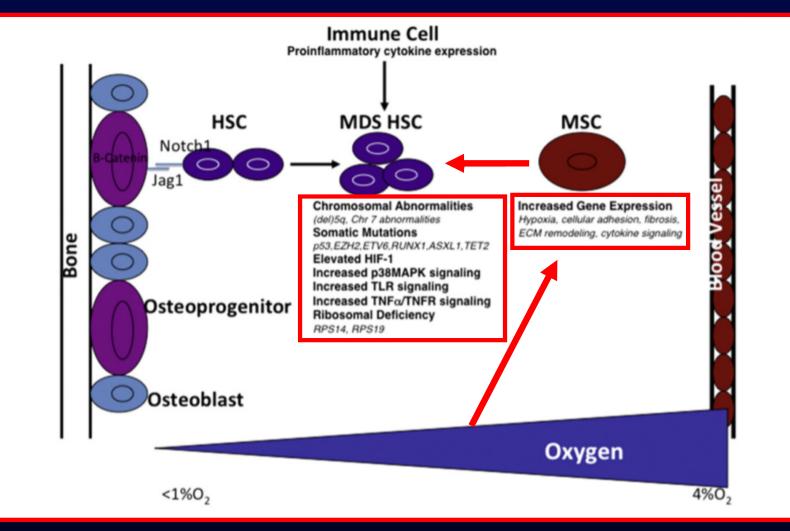
Hongyan Tong, Chao Hu, Zhengping Zhuang, Lijun Wang & Jie Jin

CellPress

Myelodysplastic Cells in Patients Reprogram Mesenchymal Stromal Cells to Establish a Transplantable Stem Cell Niche Disease Unit

Hind Medyouf,^{1,11,13,*} Maximilian Mossner,² Johann-Christoph Jann,² Florian Nolte,² Simon Raffel,³ Carl Herrmann,^{4,5} Amelie Lier,³ Christian Eisen,³ Verena Nowak,² Bettina Zens,^{1,3} Katja Müdder,^{1,3} Corinna Klein,^{1,3} Julia Obländer,² Stephanie Fey,² Jovita Vogler,² Alice Fabarius,² Eva Riedl,⁶ Henning Roehl,⁷ Alexander Kohlmann,⁸ Marita Staller,⁸ Claudia Haferlach,⁸ Nadine Müller,² Thilo John,⁹ Uwe Platzbecker,¹⁰ Georgia Metzgeroth,² Wolf-Karsten Hofmann,² Andreas Trumpp,^{1,3,11,12,*} and Daniel Nowak^{2,12}

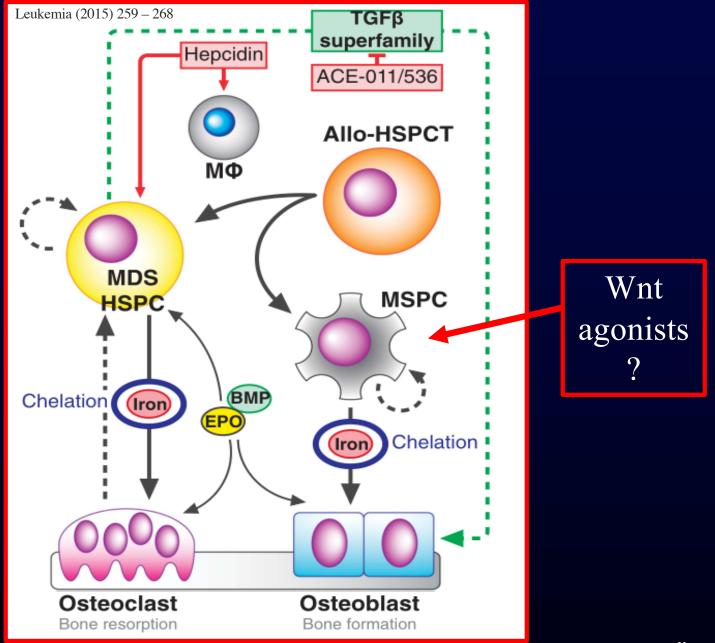
Published in final edited form as: *Exp Hematol.* 2007 January ; 35(1): 21–31. doi:10.1016/j.exphem.2006.08.017.


Enhanced growth of myelodysplastic colonies in hypoxic conditions

James Edwin Thompson, Joseph Patrick Conlon, Xiaowei Yang, Patricia Vanessa Sanchez, and Martin Carroll

Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, Pa., USA

Hypoxia and MDS


Immune cells, osteoblasts, and signaling molecules that influence MDS-HSC signalling and functions. Hypoxia also has the capacity to directly and indirectly influence the behavior of MDS HSCs

Potential therapeutic targets of the osteo-hematopoetic niche

Table 2. Currently available therapeutic options for patients with MDS and their potential impact on the functional properties of the osteohematopoietic niche

Agent	Mechanism	
HMA (azacitidine/decitabine)	* Demethylation of Wnt-antagonist gene promoters and reduction of the non-phosphorylated β -catenin in HSPCs ¹⁰⁵	
	* Upregulation of BMP-2, -4 and -6 expression in osteoblasts ¹⁰⁶	
Lenalidomide	* Inhibiting angiogenesis, suppressing the production of proinflammatory cytokines (for example, TNFα), inhibiting cytokinesis in MDS cell lines ⁷⁸	
	* Decrease of CXCL12 secretion by MSPCs, thereby detaching HSPC from their niche; enhancement of CD29 (integrin β1) expression ⁶⁹	
	* Increase in expression of adhesion molecules in HSPCs; increase in CXCL12 and ICAM-1 secretion by MSPCs, thus improving their hematopoiesis-supporting capacity ⁷²	
ACE-011/ACE-536	* Trap of important soluble factors (that is, activin, BMP-2, BMP-6) secreted by stromal cells ^{107,112}	
	* Modulating of the SMAD signaling pathway, which leads to changes in the transcription of SMAD-regulated target genes ¹¹³	
Iron chelation	* Activation of Wnt/β-catenin pathway and induction of osteoblastic differentiation of MSPCs ¹¹⁷	

Potential therapeutic targets of the osteo-hematopoetic niche

Krampera

Extracellular vesicles in MDS

Haematologica. 2016 Apr;101(4):437-47. doi: 10.3324/haematol.2015.134932. Epub 2016 Jan 22.

Extracellular vesicle miR-7977 is involved in hematopoietic dysfunction of mesenchymal stromal cells via poly(rC) binding protein 1 reduction in myeloid neoplasms.

Horiguchi H¹, Kobune M², Kikuchi S¹, Yoshida M¹, Murata M³, Murase K¹, Iyama S¹, Takada K¹, Sato T¹, Ono K¹, Hashimoto A¹, Tatekoshi A¹, Kamihara Y¹, Kawano Y¹, Miyanishi K¹, Sawada N³, Kato J¹.

Circulating exosomal microRNAs in acquired aplastic anemia and myelodysplastic syndromes

Valentina Giudice,¹ Lauren G. Banaszak,¹ Fernanda Gutierrez-Rodrigues,¹ Sachiko Kajigaya,¹ Reema Panjwani,¹ Maria del Pilar Fernandez Ibanez,¹ Olga Rios,¹ Christopher K. Bleck,² Erin S. Stempinski,² Diego Quinones Raffo,¹ Danielle M. Townsley¹ and Neal S. Young¹

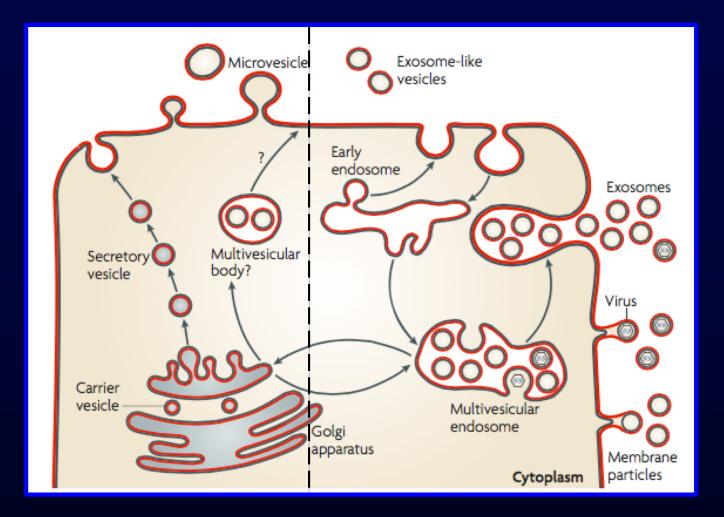
Microvesicles from Mesenchymal Stromal Cells Are Involved in HPC-Microenvironment Crosstalk in Myelodysplastic Patients

Sandra Muntión, Teresa L. Ramos, María Diez-Campelo, Beatriz Rosón, Luis Ignacio Sánchez-Abarca, Irena Misiewicz-Krzeminska, Silvia Preciado, María-Eugenia Sarasquete, Javier de las Rivas, Marcos González, Fermín Sánchez-Guijo, María-Consuelo del Cañizo 🖬

Extracellular vesicles (EVs)

Exosomes

40-100 nm in diameter Alix, TSG101, Tetraspanin, Heat shock protein

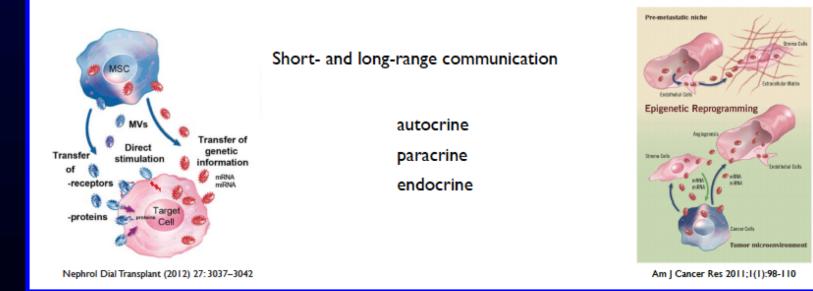

Shedding microvesicles or Ectosomes

Apoptotic bodies

50-1000 nm in diameter Phosphatidylserine RNA, Protein

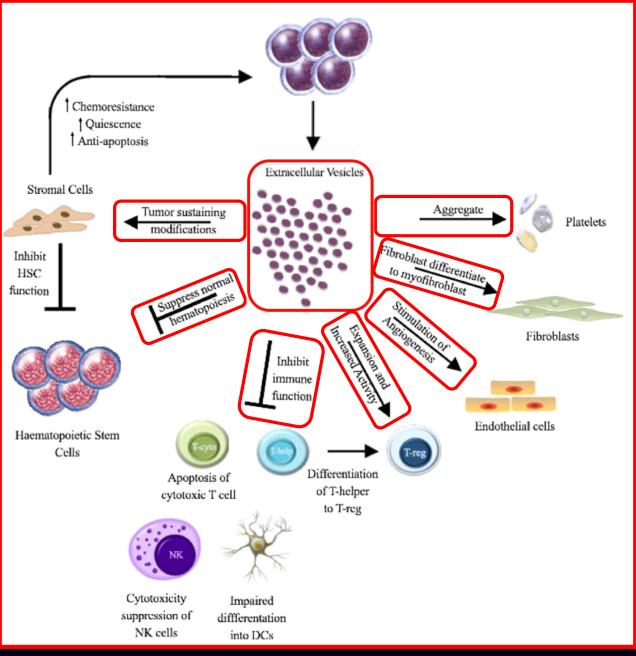
50-5000 nm in diameter Phosphatidylserine DNA

Extracellular vesicle biogenesis



Different types of secreted membrane vesicles: Intracellular trafficking either between subcellular compartments or towards the plasma membrane for secretion of soluble proteins occurs through carrier and secretory vesicles that contain intraluminal components. Secreted vesicles can form inside internal compartments from where they are subsequently secreted by fusion of these compartments with the plasma membrane. Vesicles generated in multivesicular endosomes are called exosomes once secreted. Nat Rev Immunol. 2009 Aug;9(8):581-93.

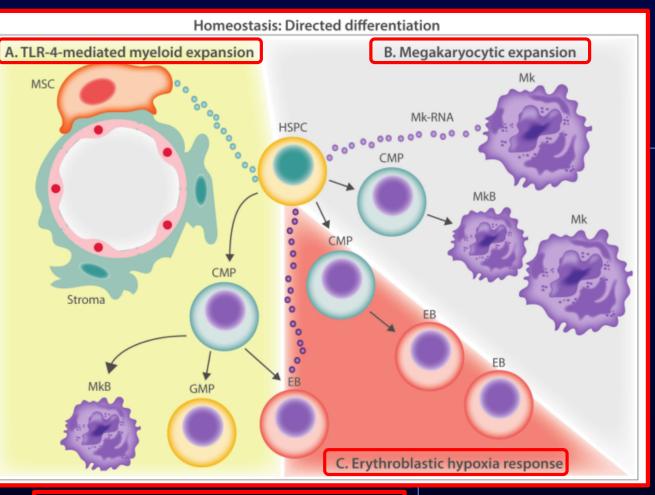
Extracellular vesicles (EVs) Potential advantages for cells


- different biologically active molecules towards the same cell target
- lipid envelope \rightarrow protection from degradation + rapid internalization
- surface proteins \rightarrow binding to specific receptors \rightarrow different cell targets

SMALL MOLECULE CONCENTRATIONS → MAXIMUM BIOLOGICAL EFFECTS (even in case of negligible quantities, undetectable with standard techniques)

Krampera 🧯

The role of the EVs in hematopoiesis

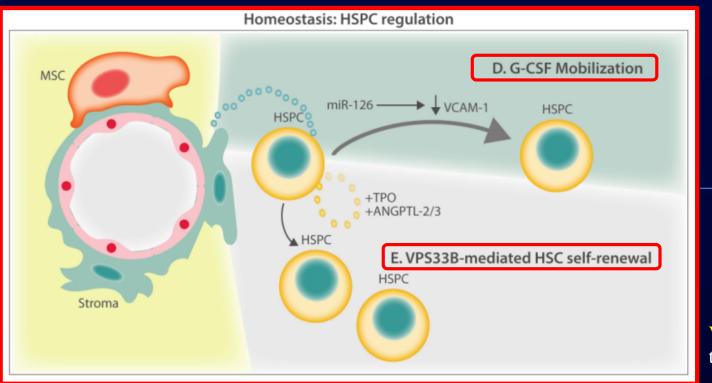


Pando et al. Leukemia Research 2018

EV crosstalk in BM microenvironmental homeostasis

MSC-derived EVs signal to HSPCs through the TLR-4 pathway, resulting in myeloid biased expansion

CMP: common myeloid progenitor; EB: erythroblast; GMP; granulocyte monocyte progenitor; HSPC: hematopoietic stem and progenitor cell; Mk: megakaryocytes; MkB: megakaryoblast



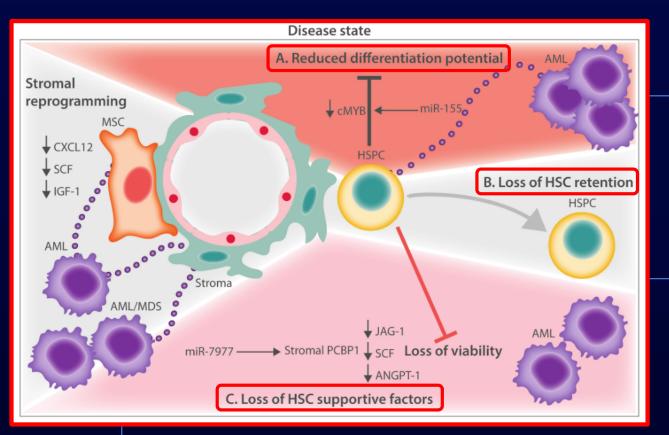
Hypoxia induces erythroid blast cells to release EVs containing miR-486 which increases erythroblastic differentiation by targeting Sirt1 in HSPCs Megakaryocyte-derived EVs are internalized by HSPCs and increase differentiation of new megakaryocytes through RNA-mediated signaling

Butler et al. Haematologica 2018

EV crosstalk in BM microenvironmental homeostasis

G-CSF infusion stimulates the release of EVs containing miR-126 that act to down-regulate VCAM-1 in HSPCs, resulting in their mobilization out of the BM

Butler et al. *Haematologica* 2018


HSPCs self-regulate stem cell potential by packaging and releasing critical secretory proteins through the exosomal pathway via VPS33B

ANGPTL-2/3; angiopoietin-like protein 2 and 3; G-CSF: granulocyte colony-stimulating factor; HSPC: hematopoietic stem and progenitor cell; TPO: thrombopoietin; VCAM-1: vascular cell adhesion molecule; VPS33B: vacuolar protein sorting-associated protein 33B.

EV crosstalk in BM microenvironmental homeostasis

Table 2A. Physiological regulation of hematopoiesis by extracellular vesicles.									
EV origin	Recipient cell	Cargo	Molecular target and effect	Functional event	Reference				
Reticulocytes	Macrophage	Transferrin receptor		Release and recycling of transferrin receptor during enucleation and maturation of erythrocytes	[9]				
MSCs	HSPCs		TLR4: binding/activation	TLR4 signaling results in myeloid biased expansion and skewed hematopoietic repopulation potential of HSPCs	[17]				
Megakaryocytes	HSPCs	Mk-RNA	ICAM-1: binding/entry CD63: binding/entry CD18: binding/entry CD11b: binding/entry	Selective differentiation of progenitors into functional megakaryocytes	[61]				
Erythroleukemia cells	HSPCs	miR-486-5p	Sirt1: downregulation	Promotes erythroid differentiation in response to hypoxia	[63, 64]				
G-CSF stimulated BM stroma	Stroma ECs HSPCs	miR-126	VCAM-1: downregulation	Down regulation of VCAM1 leads to mobilization of HSPCs out of the niche and into peripheral blood	[52]				
Aged mouse Ye BM cells	oung mouse BM stromal cells	miR-183-5p	HMOX1: downregulation	Reduced proliferative ability of stromal cells and decreased osteogenic differentiation	[65]				
Mouse embryonic stem cells	: HSPCs	Wnt3, Oct4,	SCL: upregulation, HoxB4: upregulation GATA2: upregulation MAPK p24/44: phosphorylation	Expansion of HSPCs and expression of markers associated with early HSC states	[66]				
HSPCs	HSPCs	TPO, ANGPTL2, ANGPTL3	Autocrine signaling loop: maintains stemness	VPS33B mediated release of exosomes is required for maturation of secretory growth factors and maintaining cell stemness	[45]				

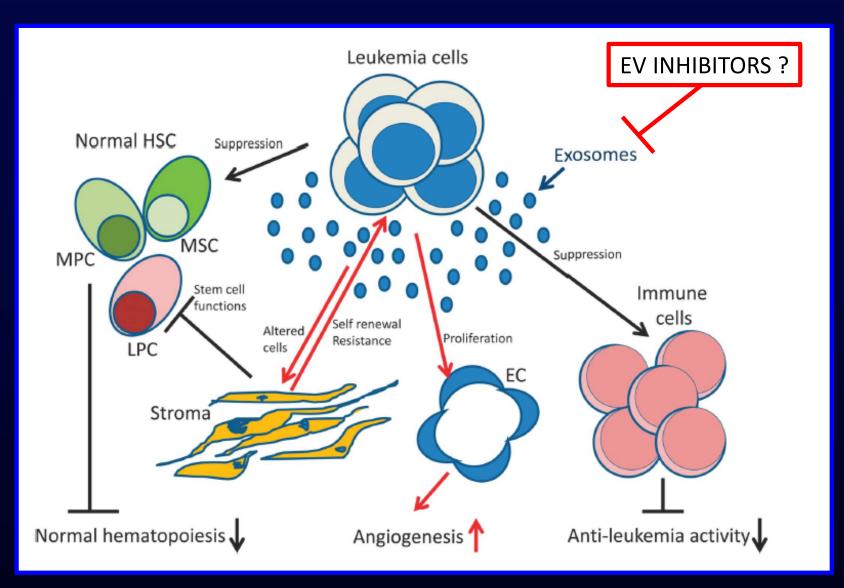
EV crosstalk in the leukemic microenvironment

Butler et al. Haematologica 2018

AML and MDS EVs promote the loss of HSPC supportive factors (CXCL12, SCF, IGF-1) through the trafficking of miR-7977 to supportive stroma, leading to reduced HSPC viability and hematopoietic potential EVs from AML blasts traffic miR-155 to HSPCs and downregulate critical transcription factors (c-MYB), resulting in reduced differentiation potential

AML EVs reprogram MSCs and stromal cells, and downregulate niche retention factor CXCL12 resulting in mobilization of HSPCs from the BM

AML: acute myelogenous leukemia; ANGPT-1: angiopoi-etin 1; CXCL12: C-X-C motif chemokine 12; HSPCs: hematopoietic stem and progenitor cells; IGF-1: insulin-like growth factor 1; MDS: myelodysplastic syndrome; PCBP1: poly(rc) binding protein 1; SCF: stem cell factor.


Krampera 🧯

Extracellular vesicle crosstalk in the pathophysiological regulation of hematopoiesis

EV originRecipient cellCargoMolecular target and effectFunctional eventReferenceAML blastsHSCPsmiR-150/155cMYB; downregulationSuppression of cMYB in HSPC reduces clonogenicity and leads to down regulation of niche retention factor CXCL12 and mobilization of HSPCs to peripheral blood[13, 51]AML blastsBM StromaCXCL12: downregulation SCF: downregulation DKK1: upregulation DKK1: upregulation SCF: downregulation DKK1: upregulation SCF: downregulation DKK1: upregulation SCF: downregulation DKK1: upregulation SCF: downregulation SCF: downregulation SCF: downregulation SCF: downregulation AML and MDS cellsmiR-7977PCBP1: downregulation Jagged1: downregulation ANGPT1: downregulation And clonogenicity[71]CML cellsBM stromaAmphiregulin (EGFR-ligand)EGFR: activation MMP9: upregulation I leading to increase attachment I leading to increase attachment I leading to increase attachment I leading to increase attachment[72]	Table 2B. Pathophysiological regulation of hematopoiesis by extracellular vesicles.									
AML blastsBM StromaCXCL12: downregulation of niche retention factor CXCL12 and mobilization of HSPCs to peripheral bloodAML blastsBM StromaCXCL12: downregulation SCF: downregulation IGF1: downregulation DKK1: upregulation DKK1: upregulation DKK1: upregulation DKK1: upregulation DKK1: upregulation SCF: downregulation DKK1 expression in BM stroma[14]AML and MDS cellsMSCsmiR-7977 miR-7977PCBP1: downregulation Jagged1: downregulation SCF: downregulation DKK1: upregulation and osteolineage development by upregulating DKK1 expression in BM stroma[70]MDS patient MSCsCD34+ progenitor cellsmiR-10a/15a MDM2: transcriptional dysregulation MDM2: transcriptional dysregulation MMP9: upregulationAlteration of HSCPs viability and clonogenicity[71]CML cellsBM stromaAmphiregulin (EGFR-ligand)EGFR: activation MMP9: upregulationAlteration of BM microenvironment leading to increase attachment[72]	EV origin	Recipient cell	Cargo	Molecular target and effect	Functional event	Reference				
AML and MDS cellsMSCsmiR-7977PCBP1: downregulation DKK1: upregulation Jagged1: downregulation SCF: downregulation DKK1 expression in BM stroma[70]MDS patient MSCsC 34* progenitor cellsmiR-10a/15aP53: transcriptional dysregulation MDM2: transcriptional dysregulationAlteration of HSCPs viability and clonogenicity[71]CML cellsBM stromaAmphiregulin (EGFR-ligand)EGFR: activation MMP9: upregulationAlteration of BM microenvironment leading to increase attachment[72]	AML blasts	HSCPs	miR-150/155		clonogenicity and leads to down regulation of niche retention factor CXCL12 and mobilization	[13, 51]				
MDS patient MSCsD34+ progenitor cellsmiR-10a/15aP53: transcriptional dysregulation MDM2: transcriptional dysregulationAlteration of HSCPs viability 	AML blasts	BM Stroma		SCF: downregulation IGF1: downregulation	factors and suppression of hematopoiesis and osteolineage development by upregulating	[14]				
MSCs cells MDM2: transcriptional dysregulation and clonogenicity CML cells BM stroma Amphiregulin (EGFR-ligand) EGFR: activation MMP9: upregulation Alteration of BM microenvironment leading to increase attachment [72]	AML and MDS cells	MSCs	miR-7977	Jagged1: downregulation SCF: downregulation	and hematopoiesis-supportive	[70]				
(EGFR-ligand) MMP9: upregulation leading to increase attachment	-				•	[71]				
	CML cells	BM stroma				[72]				
Melanoma cells BM progenitors c-MET Mobilization of BM progenitors and [73] upregulation of proinflammatory molecules at sites of macrophage trafficking leading to promotion of melanoma invasion and metastasis	Melanoma cells	M progenitors			upregulation of proinflammatory molecules at sites of macrophage trafficking leading	[73]				

Butler et al. Haematologica 2018

Role for EVs in pathological hemato-/lymphopoiesis

Boyiadzis M, Whiteside TL. The emerging role of tumor exosomes in hematological malignancies. Leukemia 2017;31:1259-68

CONCLUSIONS

Normal hematopoiesis

HSCs

MDS hematopoiesis Abnormal HSCs

Mutation-specific target-therapy

Microenvironmentdirected therapy

<u>La differenza tra un castello di carta ed uno di pietra</u> <u>è che serve davvero poco per farlo crollare.</u>

[Edoardo Zanzottera]

Niche cells

Intercellular pathwaysSoluble factors / EVs

Abnormal

Niche cells

- Wnt / β-catenin - Epo
- Iron metabolism

Stem Cell Research Laboratory Section of Hematology, Department of Medicine www.stemcellreslab-verona.it

Annalisa Adamo Giada Dal Collo Riccardo Bazzoni Angela Mercuri

Paul Takam Kamga Alessandro Gatti Mariano Di Trapani Giulio Bassi

UNIVERSITÀ di **VERONA**

Jessica Brandi <u>Prof. Daniela Cecconi</u>

Simone Caligola Pietro Delfino <u>Prof. Rosalba Giugno</u>

Functional Genomics Lab

Marzia Rossato Carla Giuseppina Avanzato Alessia Mori <u>Prof. Massimo Delledonne</u>

UNIVERSITÀ DEL PIEMONTE ORIENTALE

Marcello Manfredi Elisa Robotti <u>Prof. Emilio Marengo</u>